วันพฤหัสบดีที่ 10 เมษายน พ.ศ. 2557

Calculus Applications of Differentiation


Main Menu


# h3cadiap1
Water is poured into an inverted circular cone of base radius 5 cm
and height 15 cm at the rate of 10 cm3•s-1  Calculate;
a)the rate of increase of the height of water level.
b)the rate of increase of the surface area of the water,when the
water level is 4 cm high.
(Leave answers in terms of π where applicable.)
(Problem credited by O-Level --Marshal Cavendish)





Strategy
the rule "Must have" of Mr.Zhang ®
Give the water level be h cm high after time
t seconds, and the radius of the water surface
r cm at this moment as the figure 1 which is
a cross-section of the cone.
1. Similar triangle,find r in terms of h
2. Water volume       (V)   =
1
3
πr2h → (1)
3.  Take ;
dy
dx
   both side to get the rate of increase.


Solution
Take similar triangle ;
  
r
h
=
5
15
   r =
h
3
 → (2)
From equation(1) v =
1
3
 π r2h → (1)
Take r from equation(2) substitued to (1) v =
1
3
 π  (
h
3
)2 h
v =  π 
h3
27
Take Diff
dV
dh
=  π 
h2
9
From 
dV
dt
=
dV
dh
 x
dh
dt

dV
dt
= 10 cm3•s-1 and h = 4 , then ;
10  = 
 π 42
9
 x 
dh
dt
10x9
16 π 
 = 
dh
dt
45
8π 
 = 
dh
dt

Ans.   a) the rate of increase of the height when the height is 4 cm, is
45
8π 
cm•s-1


b) The water surface is circular,therefore, the surface area
A =  πr2 at any instant
From equation(2),  r   = 
h
3
HenceA  = 
πh2
9
Take Diff
dA
dh
 = 
2πh
9
And
dA
dt
 = 
dA
dh
 x
dh
dt
Substitue h=4 and
dh
dt
 = 
45
, we get  
dA
dt
=
2π(4)
9
x
45
⇒                          
dA
dt
= 5 cm2•s-1

Ans.   the surface rate of the water is increasing at the rate of 5 cm2•s-1
when the water level height is 4 cm.

ไม่มีความคิดเห็น:

แสดงความคิดเห็น